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LECTURE NOTES: 4-2 THE MEAN VALUE THEOREM
(PART 1)

| MOTIVATING EXAMPLES: | Draw several examples of graphs of functions such that (i) the domain is

[a,b] and (ii) f(a) = f(b). Note you are not required to make sketches that are continuous or differen-
tiable, though you may choose to do so.
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QUESTION 3: | State in plain old English (or draw a picture) to explain what it means for the graph of

f(z) if you know f’(c) = 0. j A

The den %ucl’. o curve

is horizo nhal ot / : \ >
X=C. C sohere _(j(a\:_g(_b)

QUESTION 4: | Based on our examples on the previous pageland your knowledge of graphs more
broadly, what requirements would be needed to guarantee the existence of an z-value c in the open

interval (a, b) such that f/(c¢) = 0? o .
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and
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ROLLE’S THEOREM: |If and

e Fla)=£(b),

then there is a number ¢ in the interval (a, b) such that f’(c) = 0.

QUESTION 5: | Now that we see a pattern, can we give an argument for why that pattern should hold?
(HINT: What does the Extreme Value Theorem say again??)
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| PRACTICE PROBLEMS: |

1. Consider f(z) = 23 — 222 — 4z + 2 on the interval [-2, 2].

(a) Verify that the function f(x) satisfies the hypothesis of Rolle’s Theorem on the given interval.
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(b) Find all numbers c that satisfy the conclusion of Rolle’s Theorem.
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2. Use Rolle’s Theorem to show that the equation 3 — 152 + d = 0 can have at most one solution in the
interval [—2, 2].
HINT: Show that there is no way there could be two solutions!
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\MOTIVATING EXAMPLES: \ Draw several examples of graphs of functions such that (i) the domain is
[a,b], (ii) f(x)is continuous on [a,b], and (iii) f(z) is differentiable on [a,b]. We are not assuming that

fla) = f(0)- " noyarveps Sroo-H
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In each picture above, draw (or in someL:)':c'her way identify) the quantity: L
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What would this quantity be if Rolle’s Theorem applied?
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\ THE MEAN VALUE THEOREM: ‘If f(z) is continuous on [a, b] and differentiable on (a, b), then there is a
number c in the interval (a, b) such that
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\ OBSERVATION: \ The Mean Value Theorem is just Rolle’s Theorem if you turn your head sideways.
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Assume that f(z) is continuous and differentiable on the interval [a, b] and assume there

exists some z-value d in (a, b) such that f(d) > f(a), can you draw any conclusion about f’(z)? Why or
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If f/(x) = 0 for all z in the interval (a, b), then
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How would you explain why this theorem is true? (Hint: See your answer to Question
7")
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If f(x) gives the position of an object as a function of time, what “common sense” idea is
the MVT telling us? Theorem 5?
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